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Abstract

Temperature-modulated calorimetry, in which an apparatus for temperature-modulated differential scanning calorimetry

(DSC) is employed, has a variety of advantages in heat capacity measurement. Namely, the absolute value of heat capacity can

be obtained easily, by using periodic signal we can exclude the effects of external noises and drifts, the frequency dependence

of heat capacity can be measured, etc. However, it is quite different from differential scanning calorimetry when we consider

the principle of its performance, although the apparatus developed for DSC is generally used for temperature-modulated

calorimetry as well. In this paper, the difference between them is clari®ed and based upon it the possibility of the application is

discussed. # 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Temperature-modulated calorimetry, in which a

conventional differential scanning calorimeter is used

has a variety of advantages.

1. Superior to light-irradiation a.c. calorimetry, the

absolute value of heat capacity can be determined

easily and furthermore, superior to Joule-heating

a.c. calorimetry, heat capacities such as a

temperature sensor, a heater, etc. do not affect

the measurement.

2. In comparison with conventional DSC, the effects

of external noises and drift can be easily excluded

because the a.c. temperature response to periodic

heating is used in analyzing the data.

3. Heat capacity can be measured as a function of

frequency.

When we consider the principle of the performance

of an apparatus, within framework of a naõÈve model

the expression for obtaining heat capacity is given in

common terms in both heat-¯ux DSC and tempera-

ture-modulated calorimetry. Namely, in heat-¯ux

DSC, the heat capacity, C, of a sample is expressed by

C � KDT

dT=dt
; (1)

where K is the heat transfer coef®cient of the heat

paths between a heater and a base plate, DT the

temperature difference between reference and sample
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sides and dT/dt the heating rate. On the other hand, in

temperature-modulated calorimetry, C is expressed by

C � KAD

oAS

; (2)

where AD is the amplitude of a.c. temperature differ-

ence between reference and sample sides, o the

angular frequency and AS the amplitude of a.c. tem-

perature of sample side. In addition, the phase differ-

ence between the a.c. temperature difference and the

a.c. temperature of sample side is p/2. By comparing

Eqs. (1) and (2), we ®nd that the both expressions are

essentially the same. However, the relation of Eq. (2)

is not always correct. In temperature-modulated

calorimetry, we have to take into account the effects

of the propagation of a.c. temperature waves in the

apparatus and a thermal resistance between the pan

and a base plate since much quick temperature

response is required different from the conventional

DSC. For instance, although K is almost constant in

heat-¯ux DSC, K is almost constant but it depends not

only on temperature but also on frequency in tem-

perature-modulated calorimetry. In the present paper,

the above contributions have been considered in an

apparatus when a.c. temperature wave propagation

takes place. We have already proposed a method to

obtain the heat capacity even when there is a thermal

resistance between a pan and a base plate [1,2]. This is

not discussed further in this paper.

By taking into account the above aspects, it is

pointed out that temperature-modulated calorimetry is

especially useful for the measurement of the heat capa-

city anomaly at a glass transition where even in a small

change of the heat capacity we can obtain the anomaly

independent of noise and drift against temperature.

2. Temperature-wave propagation in an
apparatus

When we measure heat capacity by periodical

heating methods, generally it is required that the

thermal diffusion length is much larger than sample

thickness, because the temperature in accordance with

periodic heating should change uniformly over a

sample. In periodic heating, both the temperature

wave number and the temperature decay constant in

a material are given by the same expression as

k �
����������
o
2a
�

r ���������
orc

2l

r
; (3)

where o is the angular frequency, a the thermal

diffusivity, r the density, c the heat capacity and l
the thermal conductivity. Here, 1/k is called thermal

diffusion length. As seen in Eq. (3), the magnitude of k

depends not only on frequency but also on thermo-

physical properties of a sample.

As discussed above, the uniformity of a.c. tempera-

ture in a sample has been considered so far [3,4]. At a

high frequency and/or in a thick sample, owing to the

characteristic of a.c. temperature waves it is inevitable

to exclude the temperature distribution in a sample.

Schenker and StaÈger [3] have calculated the distribu-

tion by solving the differential equation of thermal

diffusion in terms of a ®nite element analysis and a

priori expressed a sample thermally by heat capaci-

tances and thermal resistances in the same manner as

an electrical equivalent circuit. Hatta and Minakov [4]

have proposed the condition to attain the proper

uniformity of a.c. temperature in a sample for the

heat capacity measurement based upon the exact

solution. It is pointed out that in temperature-modu-

lated calorimetry the above phenomena should be

taken into account not only for a sample but also

for an apparatus. Then, in the present paper attention is

focussed in representing the portion in an apparatus,

e.g., a heat transfer portion, a base plate, in terms of

heat capacitances and thermal resistances.

To consider further, let us discuss one-dimensional

a.c. temperature wave propagation. As shown in Fig. 1,

plane a.c. temperature waves propagate along x-direc-

tion. The relation between a.c. temperature T and a.c.

Fig. 1. One-dimensional temperature wave propagation in a bulk

material.
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heat ¯ux q at x�x1 and x�x2 is considered. Generally,

the a.c. temperature T1 and a.c. heat ¯ux q1 at x�x1

relate with a.c. temperature T2 and a.c. heat ¯ux q2 at

x�x2 as follows [5]:

When

k�x2 ÿ x1� < 1; (5)

each term in Eq. (4) can be expanded in terms of

k(x2ÿx1). Furthermore, if we take into account the

®rst-order term with respect to k(x2ÿx1), we obtain

T2

q2

� �
� 1 ÿR

ÿioC 1

� �
T1

q1

� �
; (6)

where R�(x2ÿx1)/l and C�rc(x2ÿx1). Then, in the

form of an electrical equivalent circuit the relation

might be expressed. When there is only a resistance R

between x1 and x2, the relation between a.c. tempera-

ture T and a.c. heat ¯ux q at x�x1 and x�x2 is given by

T2

q2

� �
� 1 ÿR

0 1

� �
T1

q1

� �
: (7)

This equivalent circuit is expressed as shown in

Fig. 2. On the other hand, when there is only a

capacitance between x1 and x2, the relation between

a.c. temperature Tand a.c. heat ¯ux q at x�x1 and x�x2

is given by

T2

q2

� �
� 1 0

ÿioC 1

� �
T1

q1

� �
: (8)

This equivalent circuit is expressed as shown in Fig. 3.

When there is a capacitance and a resistance in

order from x1 to x2 and vice versa, we can draw the

equivalent circuit as in Fig. 4A and B, respectively.

From Eqs. (7) and (8) the relation between a.c.

temperature T and a.c. heat ¯ux q at x�x1 and x�x2

is given by

T2

q2

� �
� 1 ÿR

0 1

� �
1 0

ÿioC 1

� �
T1

q1

� �
� 1� ioCR ÿR

ÿioC 1

� �
T1

q1

� �
(9)

for Fig. 4A. The relation for Fig. 4B is given by

T2

q2

� �
� 1 0

ÿioC 1

� �
1 ÿR

0 1

� �
T1

q1

� �
� 1 ÿR

ÿioC 1� ioCR

� �
T1

q1

� �
(10)

If we ignore ioCR in diagonal components, both Eqs.

(9) and (10) tend to Eq. (6). It should be pointed out

that, since k(x2ÿx1)� ���������������
oCR=2

p
, the condition of

oCR�1 is the same as the condition of Eq. (5).

In one-dimensional a.c. temperature wave propaga-

tion, the equivalent circuit is shown by either Fig. 4A

or B because they are equivalent under the above

condition.

Based upon the above consideration, we can con-

struct the equivalent circuit for an apparatus [6]. It is

pointed out that, in a temperature-modulated calori-

meter, the heat transfer coef®cient K of the heat path

Fig. 2. Equivalent circuit when there is only a thermal resistance

between x1 and x2.

Fig. 3. Equivalent circuit when there is only a heat capacitance

between x1 and x2.

T2

q2

� �
� cosh��1� i�k�x2 ÿ x1�� ÿ sinh��1� i�k�x2 ÿ x1��� �= �1� i�lk� �
ÿ�1� i�lk sinh��1� i�k�x2 ÿ x1�� cosh��1� i�k�x2 ÿ x1��

 !
T1

q1

� �
: (4)
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from the heater to the base plate, the heat transfer

coef®cient of the mutual heat exchange between the

sample and the reference sides, the heat capacity of the

base plate, etc. are no longer expressed in terms of a

single component of heat capacitance and thermal

resistance as in a conventional differential scanning

calorimeter. Furthermore, the equivalent circuit for the

total system depends on frequency as deduced from

the condition of Eq. (5). For instance, in a bulk

material shown in Fig. 1, when frequency increases,

x2ÿx1 should be chosen by smaller distance and as a

result the bulk material is expressed by connecting

circuits of Fig. 4A or B in series.

The above facts indicate that Eq. (2) should be

modi®ed in temperature-modulated calorimetry,

since K becomes complex and the other parts in the

apparatus are also modi®ed. As a result, the phase

difference between AD and AS is no longer p/2. In

fact, as shown in the previous paper [2], K and the

heat capacity of the base plate depends on frequency.

However, as far as the total system consists of a

linear circuit, we can more or less obtain an unique

relation between the heat capacity of a sample and

the a.c. temperatures in an apparatus. The most sig-

ni®cant difference in the total equivalent circuit

between a temperature-modulated calorimeter and a

conventional differential scanning calorimeter is that

in former we have to take into account the heat

capacity of the base plate [1,2,7]. Even in such a

case, we can derive an improved relation between

the heat capacity of a sample and the a.c. temperatures

in an apparatus, if we use the information on the

phases [1,2]. Furthermore, we have already shown

that, even when there is the contribution of the

thermal contact conductance between the sample

pan and the base plate of an apparatus which is

another signi®cant contribution for temperature-

modulated calorimetry, we can obtain a much

improved relation [1,2].

3. Dissipation of heat from the surface of a sample

In a temperature-modulated calorimeter, the role of

gas for the heat capacity measurement is not clear yet.

In order to consider it, let us analyze such a system as

shown in Fig. 5. The thickness d of a sample is thin

enough to attain uniform temperature change in the

sample, i.e., to determine the heat capacity C of the

sample per unit area within accuracy of 1% kd20.4

[4]. When a.c. heat ¯ux q is applied to the front surface

of a sample without heat dissipation, we obtain the a.c.

temperature at the front surface as

T�0� � q

ioC
: (11)

Fig. 4. (A) Equivalent circuit composed of a heat capacitance and a

thermal resistance in order from x1 to x2. (B) Equivalent circuit

composed of a thermal resistance and a heat capacitance in order

from x1 to x2.

Fig. 5. Heat dissipation from the surface of a sample to

surrounding gas.
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On the other hand, when a part of heat dissipates

from the rear surface of the sample into gas, the a.c.

temperature at the front surface is given by

T�0� � q�lk � �1� i�lgkgkd�
i2l2k3d � �1� i�lgkglk

; (12)

where the suf®x g indicates gas. Usually, we can put so

that lk is smaller than lgkgkd. Then, Eq. (12) is

approximately rewritten as

T�0� � q

i2lk2d � �1� i�lgkg

� q

io�rcd �
�������������������
rgcglg=o

q
� �����������������

orgcglg

p :

(13)

In Eq. (13) if orcd is larger than
�����������������
orgcglg

p
, it

tends to Eq. (11). In such a case, we can neglect the

contribution of gas. Generally, since
�������������
rgcglg

p
indi-

cates thermal effusivity in gas, the sample is covered

by gas thermally, and as seen in Eq. (13) the heat

capacity of the sample is modi®ed and furthermore,

the apparent heat loss should be added.

4. Conclusion

In a temperature-modulated calorimeter, the char-

acteristic of the individual portion in an apparatus is

different from that for a conventional differential

scanning calorimeter. The heat-transfer coef®cient

in a temperature-modulated calorimeter is no longer

a simple heat conductance as in conventional differ-

ential scanning calorimeter. This behavior becomes

much remarkable at a high frequency. Nevertheless,

the system is composed of a linear circuit and there-

fore, once one calibrates the apparatus using a stan-

dard material, one can measure the heat capacity of a

sample with a high accuracy. Furthermore, the heat

loss through the surrounding gas should be carefully

taken into account.

By taking into account the above aspects, we can

apply the temperature-modulated calorimetry to the

heat capacity measurement of a variety of materials.

Especially, it is usefully applied to the measurement of

the heat capacity anomaly at a glass transition where

even in a small change of the heat capacity we can detect

the anomaly independent of noise and drift against

temperature. Furthermore, we can measure frequency

dependence of the heat capacity at a glass transition.
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